Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress

نویسندگان

  • Hong Yao
  • Youwei Xu
  • Lianhong Yin
  • Xufeng Tao
  • Lina Xu
  • Yan Qi
  • Xu Han
  • Pengyuan Sun
  • Kexin Liu
  • Jinyong Peng
چکیده

Intrahepatic cholestasis, a clinical syndrome, is caused by excessive accumulation of bile acids in body and liver. Proper regulation of bile acids in liver cells is critical for liver injury. We previously reported the effects of dioscin against α-naphthylisothio- cyanate (ANIT)-induced cholestasis in rats. However, the pharmacological and mechanism data are limited. In our work, the animals of rats and mice, and Sandwich-cultured hepatocytes (SCHs) were caused by ANIT, and dioscin was used for the treatment. The results showed that dioscin markedly altered relative liver weights, restored ALT, AST, ALP, TBIL, GSH, GSH-Px, MDA, SOD levels, and rehabilitated ROS level and cell apoptosis. In mechanism study, dioscin not only significantly regulated the protein levels of Ntcp, OAT1, OCT1, Bsep and Mrp2 to accelerate bile acids excretion, but also regulated the expression levels of Bak, Bcl-xl, Bcl-2, Bax, Caspase 3 and Caspase 9 in vivo and in vitro to improve apoptosis. In addition, dioscin markedly inhibited PI3K/Akt pathway and up-regulated the levels of Nrf2, GCLc, GCLm, NQO1 and HO-1 against oxidative stress (OS) caused by bile acids. These results were further validated by inhibition of PI3K and Akt using the inhibitors of wortmannin and perifosine in SCHs. Our data showed that dioscin had good action against ANIT-caused intrahepatic cholestasis through regulating transporters, apoptosis and OS. This natural product can be considered as one active compound to treat intrahepatic cholestasis in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model

Intrahepatic cholestasis is a kind of clinical syndrome along with hepatotoxicity which caused by intrahepatic and systemic accumulations of bile acid. There are several crucial generating factors of the pathogenesis of cholestasis, such as inflammation, dysregulation of bile acid transporters and oxidative stress. SIRT1 is regarded as a class III histone deacetylase (HDAC). According to a set ...

متن کامل

Chicken bile powder protects against α-naphthylisothiocyanate-induced cholestatic liver injury in mice

This study explored the effects of chicken bile powder (CBP), a 2000-year-old Chinese medicine, on α-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. CBP treatment for 14 days significantly ameliorated ANIT-induced changes in serum alanine aminotransferase, aspartate aminotransferase, bile acids, bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase, and liver tissu...

متن کامل

Saikokeishito Extract Exerts a Therapeutic Effect on α-Naphthylisothiocyanate-Induced Liver Injury in Rats through Attenuation of Enhanced Neutrophil Infiltration and Oxidative Stress in the Liver Tissue

We examined whether Saikokeishito extract (TJ-10), a traditional Japanese herbal medicine, exerts a therapeutic effect on alpha-naphthylisothiocyanate (ANIT)-induced liver injury in rats through attenuation of enhanced neutrophil infiltration and oxidative stress in the liver tissue. In rats treated once with ANIT (75 mg/kg, i.p.), liver injury with cholestasis occurred 24 h after treatment and...

متن کامل

Loss of A(1) adenosine receptor attenuates alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice.

Cholestasis has limited therapeutic options and is associated with high morbidity and mortality. The A(1) adenosine receptor (A(1)AR) was postulated to participate in the pathogenesis of hepatic fibrosis induced by experimental extrahepatic cholestasis; however, the contribution of A(1)AR to intrahepatic cholestatic liver injury remains unknown. Here, we found that mice lacking A(1)AR were resi...

متن کامل

Proteomic approach to study the cytotoxicity of dioscin (saponin).

Dioscin, extracted from the root of Polygonatum zanlanscianense pamp, exhibits cytotoxicity towards human myeloblast leukemia HL-60 cells. Proteomic analysis revealed that the expression of mitochondrial associated proteins was substantially altered in HL-60 cells corresponding to the dioscin treatment, suggesting that mitochondria are the major cellular target of dioscin. Mitochondrial functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017